Problem 4

Probably the easiest of all PDEs to solve is the equation

$$
\frac{\partial u(x, y)}{\partial x}=0
$$

Can you solve this equation? (Find all functions $u(x, y)$ that satisfy it.)

Solution

$$
\frac{\partial u(x, y)}{\partial x}=0
$$

Integrate both sides partially with respect to x to undo the partial derivative on the left side.

$$
\int^{x} \frac{\partial u\left(x^{\prime}, y\right)}{\partial x^{\prime}} d x^{\prime}=\int^{x} 0 d x^{\prime}
$$

Use the fundamental theorem of calculus on the left. Evaluate the integral on the right.

$$
u(x, y)=0+f(y)
$$

Instead of an arbitrary integration constant C, there is an arbitrary function f of the other variable y on the right side. Therefore,

$$
u(x, y)=f(y)
$$

